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This report covers work done during the first six calendar months
of this grant. During this time labor was charged for three months at full
time and four months at one-third time for a total of four and one-third man
months. A portion of this total time was spent on duties as chairman of the
Program Committee of the 1965 Joint Automatic Control Conference. Time
was also taken to prepare a short paper, '"A New Array for Application of

Routh-Hurwitz Stability Criterion.' This has been accepted for publication
by Control Engineering Magazine.

Research on improving iteration methods has centered primarily on
convergence of the methods for equations having all complex roots. It is
felt that previous work on equations having all real roots and on those
having both real and complex roots has resulted in methods which are quite
adequate. On the over all problem it has seemed advantageous to pursue
several avenues. These are:

1. Numerical solutions of a large number of fourth and higher

order equations having roots in various parts of the complex

plane. |

2, The seeking of an analytic expression defining a region of

convergence or divergence about known roots.

3. The study of root movement or sensitivity by the method

of plotting root loci.

Item (1) has been most informative from the standpoint of understanding
behavior of the iteration in both convergent and divergent regions. It has
shown that the region of convergence may be of somewhat irregular shape and
may be extremely small or may cover the entire area of possible root locations.
A similar statement holds for roots for which the iteration is non convergent.

In an attempt to better visualize the form of iterative steps taken, these
steps have been plotted for numerous starting points for equations in which no

extrapolation has been used. An example is shown in Fig, 1 for the equation

x*+20x3+162x%2+572x+845=0 (1)
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Starting points were picked which represented all reasonable possible root

locations. The axes represent the coefficients of the trial quadratic.

x +ox + B (2)

Each indicated trial is marked by small circles and successive iteration points
are connected by straight lines. The iteration proceeded as shown by the arrows,
Note the strong tendency of the iterations to swing around and approach the root
location ( represented by &g and Py in the quadratic) along a common and fairly
straight line. One line is shown for an iteration having a numerical error in the
early stages. This line then corrects itself and swings around as do the others.

Repetition of the above scheme for many equations reveals the spiraling
tendency of the iteration values. It also reveals that the spirals for non convergent
iterations may approach a curve about the actual root location which the iterations
will not cross. Indeed, trial values picked within the region result in divergent
iterations which appear to approach the same curve from the inside.

The '"'curves' plotted in Fig. 1 bear a marked resemblance to phase
trajectories used in the study of non-linear dynamical systems. This has led
to the attempt, Item 2, to study root convergence by some of the techniques
used for non-linear systems, i.e., identification of limit cycles and the use of
Lyapunov's Direct Method. As an aid here references [1] and [Z] have been
studied extensively. No useful results have been obtained as yet but this is
the present area of endeavor.

Another method of studying convergence is given in Item 3. This is the
method of root loci. This has added additional insight in the iteration studies
but has also opened two new areas which appear to be of some importance. These
are reported briefly below.

The first area involves what might: be called moving roots in the complex
plane. If we are given an open loop control system transfer function of the form
(using Laplace notation),

K (s +a)(s +b)

Gis) = (3)
s (s +c)(s +d)




we can plot a locus of closed loop roots with K as a variable. This, of course,
is well known. We can also hold K constant and plot a locus versus any of the
other parameters, a, b, ¢ and d.[3]. This last seems to offer an excellent
method of both studying and designing systems and controls which have time
varying parameters. For example, consider a system to be controlled having

the transfer function

K
Gy (s) = ———— (4)
s (s +b)

where b may vary from some initial value to larger values. Now add

series compensation in the form

s +a
Gz (s) = ————— (5)
s +c¢

Loci for K, a, b, and c are plotted in Fig. 2. The point where all the
loci cross represents the closed loop roots for the initial values of K, a, b,
and c. Each loci then represents the motion of the closed roots for a variation
of that particular parameter. In any realistic system the total variation in b
would be limited. Thus a form of adaptive controller can be constructed based
on this motion. If b increases, for example, a may be increased or c decreased
to keep the closed loop roots in very nearly the same spot. This method may
also be used for systems with open loop transfer functions as shown in Fig. 3.

Considering Equations (4) and (5), we also appear to have a design
scheme. Suppose, in Equation (5), that a = b. The open loop transfer function
is then given by Equation (4) with the controller having no effect. We may,
however, still plot loci of 2 and b even though they are equal. Such an example
is shown in Fig. 4. This offers a design method. A control function with a = b
(or possibly several) can be put in the neighborhood of the system poles. Then,
once the system closed loop roots are located, they can be moved to a desirable

location along one of the a and/or b loci.
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Summarizing, present efforts are in the area of Item 2, the search

for analytic expressions defining areas of convergence. Item 3 with the
results reported above appears to offer promise of a new area of research.

This will probably be pursued at a later date in the form of another proposal
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